Skip to main content

Bedrock (知识库) 检索器

概述

本指南将帮助您开始使用 AWS 知识库 retriever

Amazon Bedrock 的知识库 是亚马逊网络服务 (AWS) 的一项服务,允许您使用私有数据快速构建 RAG 应用程序,以自定义 FM 响应。

实施 RAG 需要组织执行多个繁琐的步骤,将数据转换为嵌入(向量),将嵌入存储在专用的向量数据库中,并构建自定义集成以在数据库中搜索和检索与用户查询相关的文本。这可能耗时且效率低下。

使用 Knowledge Bases for Amazon Bedrock,只需指向您数据在 Amazon S3 中的位置,Knowledge Bases for Amazon Bedrock 将处理整个数据摄取工作流程到您的向量数据库。如果您没有现有的向量数据库,Amazon Bedrock 会为您创建一个 Amazon OpenSearch Serverless 向量存储。在检索时,通过 Retrieve API 使用 Langchain - Amazon Bedrock 集成,从知识库中检索与用户查询相关的结果。

集成细节

检索器自托管云服务
AmazonKnowledgeBasesRetrieverlangchain_aws

设置

知识库可以通过 AWS 控制台 或使用 AWS SDK 进行配置。我们需要 knowledge_base_id 来实例化检索器。

如果您希望从单个查询获取自动跟踪,可以通过取消注释以下内容来设置您的 LangSmith API 密钥:

# os.environ["LANGSMITH_API_KEY"] = getpass.getpass("Enter your LangSmith API key: ")
# os.environ["LANGSMITH_TRACING"] = "true"

安装

该检索器位于 langchain-aws 包中:

%pip install -qU langchain-aws

实例化

现在我们可以实例化我们的检索器:

from langchain_aws.retrievers import AmazonKnowledgeBasesRetriever

retriever = AmazonKnowledgeBasesRetriever(
knowledge_base_id="PUIJP4EQUA",
retrieval_config={"vectorSearchConfiguration": {"numberOfResults": 4}},
)

用法

query = "What did the president say about Ketanji Brown?"

retriever.invoke(query)

在链中使用

from botocore.client import Config
from langchain.chains import RetrievalQA
from langchain_aws import Bedrock

model_kwargs_claude = {"temperature": 0, "top_k": 10, "max_tokens_to_sample": 3000}

llm = Bedrock(model_id="anthropic.claude-v2", model_kwargs=model_kwargs_claude)

qa = RetrievalQA.from_chain_type(
llm=llm, retriever=retriever, return_source_documents=True
)

qa(query)

API 参考

有关所有 AmazonKnowledgeBasesRetriever 功能和配置的详细文档,请访问 API 参考

相关


此页面是否有帮助?


您还可以留下详细的反馈 在 GitHub 上