Skip to main content

Postgres 嵌入

Postgres 嵌入 是一个开源向量相似性搜索工具,适用于 Postgres,使用 Hierarchical Navigable Small Worlds (HNSW) 进行近似最近邻搜索。

它支持:

  • 使用 HNSW 进行精确和近似最近邻搜索
  • L2 距离

本笔记本展示了如何使用 Postgres 向量数据库 (PGEmbedding)。

PGEmbedding 集成为您创建了 pg_embedding 扩展,但您需要运行以下 Postgres 查询以添加它:

CREATE EXTENSION embedding;
# 安装必要的包
%pip install --upgrade --quiet langchain-openai langchain-community
%pip install --upgrade --quiet psycopg2-binary
%pip install --upgrade --quiet tiktoken

将 OpenAI API 密钥添加到环境变量中以使用 OpenAIEmbeddings

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass("OpenAI API Key:")
OpenAI API Key:········
## 加载环境变量
from typing import List, Tuple
from langchain_community.document_loaders import TextLoader
from langchain_community.vectorstores import PGEmbedding
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
os.environ["DATABASE_URL"] = getpass.getpass("Database Url:")
Database Url:········
loader = TextLoader("state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

embeddings = OpenAIEmbeddings()
connection_string = os.environ.get("DATABASE_URL")
collection_name = "state_of_the_union"
db = PGEmbedding.from_documents(
embedding=embeddings,
documents=docs,
collection_name=collection_name,
connection_string=connection_string,
)

query = "总统关于 Ketanji Brown Jackson 说了什么"
docs_with_score: List[Tuple[Document, float]] = db.similarity_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)

在 Postgres 中使用 vectorstore

在PG中上传向量存储

db = PGEmbedding.from_documents(
embedding=embeddings,
documents=docs,
collection_name=collection_name,
connection_string=connection_string,
pre_delete_collection=False,
)

创建 HNSW 索引

默认情况下,扩展执行顺序扫描搜索,具有 100% 的召回率。您可能考虑为近似最近邻 (ANN) 搜索创建 HNSW 索引,以加快 similarity_search_with_score 的执行时间。要在您的向量列上创建 HNSW 索引,可以使用 create_hnsw_index 函数:

PGEmbedding.create_hnsw_index(
max_elements=10000, dims=1536, m=8, ef_construction=16, ef_search=16
)

上述函数相当于运行以下 SQL 查询:

CREATE INDEX ON vectors USING hnsw(vec) WITH (maxelements=10000, dims=1536, m=3, efconstruction=16, efsearch=16);

上述语句中使用的 HNSW 索引选项包括:

  • maxelements: 定义索引的最大元素数量。这是一个必需的参数。上面的示例值为 3。实际示例的值通常会更大,例如 1000000。“元素”指的是数据集中表示为 HNSW 图中节点的数据点(向量)。通常,您应将此选项设置为能够容纳数据集中行数的值。

  • dims: 定义向量数据中的维度数量。这是一个必需的参数。上面的示例使用了较小的值。如果您存储的是使用 OpenAI 的 text-embedding-ada-002 模型生成的数据,该模型支持 1536 维度,则可以定义为 1536。

  • m: 定义在图构建过程中为每个节点创建的最大双向链接(也称为“边”)的数量。 以下附加索引选项也受支持:

  • efConstruction: 定义在索引构建过程中考虑的最近邻数量。默认值为 32。

  • efsearch: 定义在索引搜索过程中考虑的最近邻数量。默认值为 32。 有关如何配置这些选项以影响 HNSW 算法的信息,请参阅 调优 HNSW 算法

在PG中检索向量存储

store = PGEmbedding(
connection_string=connection_string,
embedding_function=embeddings,
collection_name=collection_name,
)

retriever = store.as_retriever()
retriever
VectorStoreRetriever(vectorstore=<langchain_community.vectorstores.pghnsw.HNSWVectoreStore object at 0x121d3c8b0>, search_type='similarity', search_kwargs={})
db1 = PGEmbedding.from_existing_index(
embedding=embeddings,
collection_name=collection_name,
pre_delete_collection=False,
connection_string=connection_string,
)

query = "What did the president say about Ketanji Brown Jackson"
docs_with_score: List[Tuple[Document, float]] = db1.similarity_search_with_score(query)
for doc, score in docs_with_score:
print("-" * 80)
print("Score: ", score)
print(doc.page_content)
print("-" * 80)

相关


此页面是否有帮助?


您还可以留下详细的反馈 在 GitHub 上