在图数据库上构建问答应用程序
在本指南中,我们将介绍在图数据库上创建问答链的基本方法。这些系统将允许我们针对图数据库中的数据提出问题,并返回自然语言答案。
⚠️ 安全提示 ⚠️
构建图数据库的问答系统需要执行模型生成的图查询。这其中存在固有的风险。确保您的数据库连接权限始终根据您的链/代理的需求尽可能狭窄。这将降低但无法消除构建模型驱动系统的风险。有关一般安全最佳实践的更多信息,请查看这里。
架构
在高层次上,大多数图链的步骤如下:
- 将问题转换为图数据库查询:模型将用户输入转换为图数据库查询(例如 Cypher)。
- 执行图数据库查询:执行图数据库查询。
- 回答问题:模型使用查询结果回应用户输入。
设置
首先,获取所需的包并设置环境变量。 在本示例中,我们将使用Neo4j图形数据库。
%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j
在本指南中,我们默认使用OpenAI模型。
import getpass
import os
os.environ["OPENAI_API_KEY"] = getpass.getpass()
# 如果需要使用LangSmith,请取消注释。不是必需的。
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
········
接下来,我们需要定义Neo4j凭证。 按照这些安装步骤来设置Neo4j数据库。
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"
下面的示例将创建与Neo4j数据库的连接,并用有关电影及其演员的示例数据填充它。
from langchain_community.graphs import Neo4jGraph
graph = Neo4jGraph()
# 导入电影信息
movies_query = """
LOAD CSV WITH HEADERS FROM
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
m.title = row.title,
m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') |
MERGE (p:Person {name:trim(director)})
MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') |
MERGE (p:Person {name:trim(actor)})
MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') |
MERGE (g:Genre {name:trim(genre)})
MERGE (m)-[:IN_GENRE]->(g))
"""
graph.query(movies_query)
[]
图形模式
为了使 LLM 能够生成 Cypher 语句,它需要关于图形模式的信息。当你实例化一个图形对象时,它会检索关于图形模式的信息。如果你稍后对图形进行任何更改,可以运行 refresh_schema
方法来刷新模式信息。
graph.refresh_schema()
print(graph.schema)
Node properties are the following:
Movie {imdbRating: FLOAT, id: STRING, released: DATE, title: STRING},Person {name: STRING},Genre {name: STRING},Chunk {id: STRING, question: STRING, query: STRING, text: STRING, embedding: LIST}
Relationship properties are the following:
The relationships are the following:
(:Movie)-[:IN_GENRE]->(:Genre),(:Person)-[:DIRECTED]->(:Movie),(:Person)-[:ACTED_IN]->(:Movie)
太好了!我们有一个可以查询的图形数据库。现在让我们尝试将其连接到 LLM。
链
让我们使用一个简单的链,它接受一个问题,将其转换为 Cypher 查询,执行查询,并使用结果来回答原始问题。
LangChain 提供了一个内置链,用于与 Neo4j 一起使用的工作流程:GraphCypherQAChain
from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(graph=graph, llm=llm, verbose=True)
response = chain.invoke({"query": "What was the cast of the Casino?"})
response
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (:Movie {title: "Casino"})<-[:ACTED_IN]-(actor:Person)
RETURN actor.name[0m
Full Context:
[32;1m[1;3m[{'actor.name': 'Joe Pesci'}, {'actor.name': 'Robert De Niro'}, {'actor.name': 'Sharon Stone'}, {'actor.name': 'James Woods'}][0m
[1m> Finished chain.[0m
{'query': 'What was the cast of the Casino?',
'result': 'The cast of Casino included Joe Pesci, Robert De Niro, Sharon Stone, and James Woods.'}
验证关系方向
LLMs 在生成的 Cypher 语句中可能会对关系方向感到困惑。由于图形模式是预定义的,我们可以通过使用 validate_cypher
参数来验证并可选地纠正生成的 Cypher 语句中的关系方向。
chain = GraphCypherQAChain.from_llm(
graph=graph, llm=llm, verbose=True, validate_cypher=True
)
response = chain.invoke({"query": "What was the cast of the Casino?"})
response
[1m> Entering new GraphCypherQAChain chain...[0m
Generated Cypher:
[32;1m[1;3mMATCH (:Movie {title: "Casino"})<-[:ACTED_IN]-(actor:Person)
RETURN actor.name[0m
Full Context:
[32;1m[1;3m[{'actor.name': 'Joe Pesci'}, {'actor.name': 'Robert De Niro'}, {'actor.name': 'Sharon Stone'}, {'actor.name': 'James Woods'}][0m
[1m> Finished chain.[0m
{'query': 'What was the cast of the Casino?',
'result': 'The cast of Casino included Joe Pesci, Robert De Niro, Sharon Stone, and James Woods.'}
下一步
对于更复杂的查询生成,我们可能需要创建少量示例提示或添加查询检查步骤。有关此类高级技术和更多内容,请查看: